Journal of Organometallic Chemistry, 157 (1978) C64-C66 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

SUBSTITUTION REACTIONS OF DICYCLOOCTATETRAENEIRON. A SIMPLE ROUTE TO ZEROVALENT IRON—ORGANOPHOSPHORUS COMPOUNDS

HUGH FELKIN, PETER W. LEDNOR*, JEAN-MICHEL NORMANT and ROBIN A.J. SMITH**

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette, France (Received July 6th, 1978)

Summary

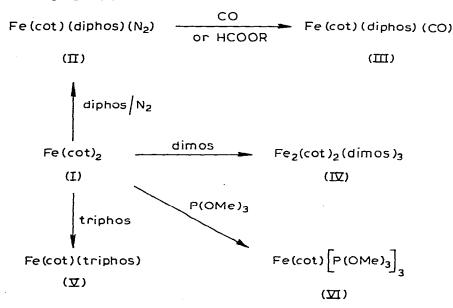
 $Fe(cot)_2$ (cot = cyclooctatetraene) reacts with certain phosphines and phosphites to give $Fe(cot)L_3$ compounds in good yield. Reaction of $Fe(cot)_2$ with $Ph_2PCH_2CH_2PPh_2$ under N_2 gives a complex containing coordinated dinitrogen, which is converted into $Fe(cot)(Ph_2PCH_2CH_2PPh_2)(CO)$ on reaction with CO or formate esters.

The chemistry of low-valent iron is dominated by the carbonyl derivatives; analogous species with organophosphorus ligands are less well known but are of current interest because of the possibility of (a) establishing a high electron density on the metal (cf. reactions of $Fe[P(OMe)_3]_5$ [1] or "Fe(PMe₃)₄" [2, 3]) (b) observing dynamic behaviour, including inter- and intra-molecular ligand exchange (cf. $Fe(1,3-cod)[P(OR)_3]_3$ [4]) (cod = cyclooctadiene and (c) obtaining potential hydrogenation catalysts. Previous synthetic routes to this class of compounds have involved reductive [1-3] or metal-atom [4, 5] techniques. We now report that substitution reactions of $Fe(cot)_2$ (I) [6] provide a simple route to novel zerovalent phosphine- and phosphite-iron compounds.

The 18-electron complex I [6], which contains fluxional η^4 - and η^6 -cot rings, gives a single ¹H NMR absorption at τ 4.96 ppm (benzene- d_6 , 34°C). No change in the spectrum is observed on treatment of the solution in benzene- d_6 with PPh₃, confirming the original report [7]. However, a benzene solution of I containing one equivalent of Ph₂PCH₂CH₂PPh₂ (diphos) under N₂ or Ar gives solutions, the ¹H NMR spectra of which show signals for uncomplexed cot (s, τ 4.37 ppm) and coordinated cot (broad s, τ 5.06 ppm) in a 1/1 ratio. No absorption for I could be detected in these solutions. The IR spectrum of this solution under N₂ shows

C64

^{*}Present address: Koninklijke/Shell Laboratorium, Amsterdam (Shell Research, B.V.), Badhuisweg 3, Amsterdam (The Netherlands).


^{**}Present address: Department of Chemistry, University of Otago, Dunedin (New Zealand).

an absorption at 2105 cm⁻¹, assigned to coordinated dinitrogen. The IR spectrum of the reaction mixture prepared under Ar showed no peak in this range. The product is thus formulated as $Fe(cot)(diphos)(N_2)$ (II) and although efforts to obtain a pure solid sample have been unsuccessful, treatment of the solution with CO yields the red crystalline Fe(cot)(diphos)(CO) (III)* (v_{max} 1900 cm⁻¹, nujol).

In contrast, the reaction of I with one equivalent of $Me_2PCH_2CH_2PMe_2$ (dimos) under N₂ gave a solution containing no IR band assignable to coordinated dinitrogen. ¹H NMR studies of this reaction showed that complete consumption of I required 1.5 equivalents of dimos and the crystalline product is accordingly formulated as $Fe_2(\cot)_2(\dim os)_3$ (IV) (cot, τ 5.08 ppm). Cryoscopic measurement in benzene indicated a molecular weight of 700 ± 100, in accordance with this formulation, and a crystal structural determination** [8] shows that the complex is $[Fe(\eta^4 - \cot)(\dim os)(Me_2PCH_2)]_2$, with a single dimos bridge between the two iron atoms.

Treatment of I with one equivalent of $PhP(CH_2CH_2PPh_2)_2$ (triphos) or three equivalents of $P(OMe)_3$ gave the crystalline compounds Fe(cot)(triphos) (V) and

SCHEME 1. cot = cyclooctatetraene; diphos = $Ph_2PCH_2CH_2PPh_2$; dimos = $Me_2PCH_2CH_2PMe_2$; triphos = $PhP(CH_2CH_2PPh_2)_2$.

Fe(cot)[P(OMe)₃]₃ (VI). Both compounds show a broadened ¹H NMR singlet resonance for coordinated cot (τ 5.11 and 4.64 ppm, respectively), indicating that the cot is fluxional and presumably η^4 -coordinated. The ⁱH NMR cot resonance in V was unchanged at -85°C (CD₂Cl₂).

These reactions of $Fe(cot)_2$ are summarized in Scheme 1.

 $Fe[P(OMe)_3]_5$ is known [1], but addition of 2 equivalents of $P(OMe)_3$ to a benzene solution of VI gave no evidence of further cot substitution. No reaction was observed following the addition of PPh_3 to a benzene solution of II.

**By C. Pascard.

^{*}The new compounds gave satisfactory elemental analyses,

C66

Variable temperature ³¹P{¹H} NMR studies on III, V and VI indicated the fluxional nature of the phosphorus ligands. Compounds III and VI showed only a single, sharp peak at δ -93.6 and -188.8 ppm* (CD₂Cl₂) respectively, and the spectra were unchanged at -80°C. These results are in contrast to the reports [4, 9] that the limiting structures of the closely related compounds Fe(1,3-cod)-[P(OMe)₃]₃ (VII) and Fe(1,3-butadiene)(diphos)(CO) can be observed in the -60 to -80°C temperature range. In accord with the results for VII [4], however, rapid intermolecular phosphite exchange was not observed, since the spectrum of a mixture of P(OMe)₃ and VI at 25°C showed two sharp peaks at δ -141.0 and -188.8 ppm. The ³¹P{¹H} NMR spectrum of V at 0°C showed two absorptions at -94.9 (d, J 9 Hz) and -117.4 (t, J 9 Hz) in an intensity ratio of 2/1. On cooling, the spectrum of V changed considerably until, at the lowest temperature limit (-80°C) of the most suitable inert solvent (CD₂Cl₂), a non-limiting spectrum was observed containing three broad signals of comparable intensity at δ -92, -95 and -188 ppm.

The chemistry of these new phosphorus—iron compounds is at present being investigated. Attempts to use them as hydrogenation catalysts have been unsuccessful, although it has been shown that I will react with phosphines or phosphites and H₂ under vigorous conditions (~ 100°C, 100 atm) to give FeH₂P₄ corapounds [10]. The dinitrogen complex II decarbonylates ethyl formate; the carbonyl complex (III) was isolated in 56% yield and ethanol was identified by ¹H NMR. This decarbonylation reaction appears to be specific for formate esters as no reaction was noted with C₆H₁₃CHO, MeCOOEt, MeCOOCH₂Ph, *p*-MeC₆H₄CHO, (COOMe)₂, HCONMe₂ or HC(OMe)₃. The reaction is somewhat unusual, and to our knowledge has only been reported previously with *trans*-Mo(diphos)₂(N₂)₂ [11].

Acknowledgements

We thank B.A.S.F. (Ludwigshafen) for a generous gift of cyclooctatetraene and Professor M. Fétizon for access to ³¹P NMR facilities.

References

- 1 E.L. Muetterties and J.W. Rathke, J. Chem. Soc. Chem. Commun., (1974) 850.
- 2 H.H. Karsch, H.-F. Klein and H. Schmidbaur, Chem. Ber., 110 (1977) 2200; H.H. Karsch, ibid., 110 (1977) 2213, 2222, 2699, 2712.
- 3 J.W. Rathke and E.L. Muetterties, J. Amer. Chem. Soc., 97 (1976) 3272.
- 4 A.D. English, J.P. Jesson and C.A. Tolman, Inorg. Chem., 15 (1976) 1730.
- 5 P.L. Timms and T.W. Turney, Advan. Organometal. Chem., 15 (1977) 53.
- 6 A. Carbonaro, A.L. Segre, A. Greco, C. Tosi and G. Dall'Asta, J. Amer. Chem. Soc., 90 (1968) 4453.
- 7 A. Carbonaro, A. Greco and G. Dall'Asta, J. Organometal. Chem., 20 (1969) 177.
- 8 C. Pascard, to be submitted.
- 9 C.B. Ungermann and K.G. Caulton, J. Organometal. Chem., 94 (1975) C9.
- 10 D.H. Gerlach, W.G. Peet and E.L. Muetterties, J. Amer. Chem. Soc., 94 (1972) 4545.
- 11 T. Tatsumi, H. Tominaga, M. Hidai and Y. Uchida, Chemistry Lett., (1977) 37.

*Negative ³¹P chemical shifts are downfield from external 85% H₃PO₄.